Fotoelektrični efekat

Pojava izbijanja elektrona iz metala, pod dejstvom svetlosti naziva se fotoelektrični efekat. Fotoelektrični efekat je objasnio Albert Ajnštajn, uvođenjem talasno-čestičnog dualizma svetlosti u fiziku.

Vidi lekciju

Radefordov ogled

Radeford je na osnovu odnosa broja rasejanih i nerasejanih alfa čestica, prilikom bombardovanja mete od zlata, utvrdio da atom poseduje vema malo, teško i pozitivno naelektrisano jezgro.

Vidi lekciju

Emisioni spektri

Emisioni spektri su diskretno zračenje koje emituju atomi nekog hemijskog elementa. Ovo zračenje se sastoji od niza pojedinačnih talasnih dužina.

Vidi lekciju

Borov model atoma

Borov model atoma se temelji na tri postulata, koja predstavljaju atom kao sistem koji čine teško pozitivno jezgro i elektroni, raspoređeni po stabilnim energetskim nivoima. Pri tom je svaki prelazak elektrona između energetskih nivoa praćen emisijom ili apsorpcijom zračenja. Na ovaj način Bor je objasnio emisione spektre atoma.

Vidi lekciju

Frank – Hercov ogled

Frank i Hertz su pokazali da atomi žive imaju čudan afinitet prema energiji od 4,9 eV, što je Niels Bor objasnio kao energiju prelaska atoma žive u prvo pobuđeno stanje. Ovaj eksperiment predstavlja ključni dokaz utemeljenosti Borovog modela atoma.

Vidi lekciju

De Broljeva hipoteza

Lui De Brolj je izneo pretpostavku da elektroni mogu imati i talasna svojstva, osim čestičnih. Kretanjem talasa oko jezgra uklonjena su ograničenja elektrodinamike na Borov model atoma. De Broljeva hipoteza predstavlja osnov moderne kvantne mehanike.

Vidi lekciju

X zračenje

X zračenje je visokoenergetsko elektromagnetno zračenje, koje nastaje u elektronskom omotaču teških atoma. Generisanje X zračenja se odvija putem dva nezavisna mehanizma, zakočnog X zračenja i karakterističnog X zračenja.

Vidi lekciju

Laser

LASER je termin koji označava monohromatsku uređenu svetlost, koja je uslovljena kvantnim efektom stimulisane emisije zračenja.

Vidi lekciju

Atomsko jezgro

Jezgro atoma čine protoni i neutroni, koji se jednim imenom nazivaju nukleoni. Nukleoni su u atomskom jezgru vezani jakom nuklearnom silom, koja ima veoma kratak domet i van jezgra se ne može opaziti.

Vidi lekciju

Prirodna radioaktivnost

Prirodna radioaktivnost je spontani, slučajni događaj kojim nestabilni izotop prelazi u neko stabilnije stanje. Tempo radioaktivnog raspada zavisi od preostalog broja nestabilnih izotopa i opisuje se periodom poluraspada.

Vidi lekciju

Radioaktivni raspadi

Alfa, beta i gama raspad su mehanizmi kojima nestabilna jezgra postižu stabilniju konfiguraciju, tako što emituju odgovarajuću česticu i oslobode se viška energije.

Vidi lekciju

Radioaktivno datiranje

Radioaktivno datiranje je postupak utvrđivanja starosti minerala na osnovu odnosa količine radioaktvnog izotopa (pretka) i stabilnog izotopa (potomka).

Vidi lekciju

Fisija

Nuklearna fisija je cepanje teškog jezgra na dva manja, pri čemu nastaju radioaktivni otpad, jonizujuće zračenje i ogromna količina energije.

Vidi lekciju

Fuzija

Nuklearna fuzija je sjedinjavanje lakih jezgara u teže jezgro, pri čemu se oslobađa ogromna količina energije, bez radioaktivnog otpada.

Vidi lekciju

Dozimetrija

Zračenje koje prolaskom kroz medijum vrši njegovu jonizaciju se naziva jonizujuće zračenje. Takvo zračenje izaziva promene u organizmu, zbog čega ga je neophodno meriti i kvalifikovati.

Vidi lekciju

Biološki efekti zračenja

Pri prolasku kroz tkivo, zračenje vrši jonizaciju atoma i molekula, koji tom prilikom mogu biti oštećeni, nakon čega prestaju sa obavljanjem bioloških funkcija.

Vidi lekciju

Detektori zračenja

Detektori jonizujućeg zračenja se koriste za otkrivanje i merenje energije jonizujućeg zračenja. Dva dominantna tipa ovih detektora su jonizaciona komora i Gajger-Milerov brojač.

Vidi lekciju

Nastanak svemira

Svemir je nastao pre 13,8 milijardi godina, u događaju danas poznatom kao Veliki Prasak. Opažanja koja ukazuju na ovaj scenario su nepobitno širenje Svemira i pozadinsko zračenje, koje uniformno ispunjava ceo Svemir.

Vidi lekciju

Evolucija zvezda

Zvezde su gasne lopte formirane delovanjem gravitacije. Pogonsko gorivo svake zvezde je proces nuklearne fuzije, koji se odvija u njenom jezgru. Svaka zvezda živi dok ne potroši fuziono gorivo.

Vidi lekciju